Product Description
MIC NO | OEM.NO | APPLICATION | YEAR | PHOTO |
TB34PG9301 | 957726 082990 |
CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX) CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW) CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC) CITROEN BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW) CITROEN C2 (JM_) 1.1 CITROEN C2 (JM_) 1.4 CITROEN C3 I (FC_, FN_) 1.1 i CITROEN C3 I (FC_, FN_) 1.4 i CITROEN C3 I (FC_, FN_) 1.4 i Bivalent CITROEN C3 II (SC_) 1.1 i CITROEN C3 II (SC_) 1.4 CITROEN C3 Pluriel (HB_) 1.4 CITROEN NEMO Box (AA_) 1.4 CITROEN NEMO Estate 1.4 CITROEN SAXO (S0, S1) 1.1 X,SX CITROEN XSARA (N1) 1.4 i CITROEN XSARA Break (N2) 1.4 i CITROEN XSARA Coupe (N0) 1.4 i FIAT FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A) FIAT QUBO (225_) 1.4 (225AXA1A) PEUGEOT 1007 (KM_) 1.4 PEUGEOT 106 II (1A_, 1C_) 1.1 i PEUGEOT 206 Hatchback (2A/C) 1.1 PEUGEOT 206 Hatchback (2A/C) 1.1 i PEUGEOT 206 Hatchback (2A/C) 1.4 i PEUGEOT 206 Hatchback (2A/C) 1.4 LPG PEUGEOT 206 Saloon 1.4 PEUGEOT 206 SW (2E/K) 1.1 PEUGEOT 206 SW (2E/K) 1.4 PEUGEOT 206+ (2L_, 2M_) 1.1 PEUGEOT 206+ (2L_, 2M_) 1.4 i PEUGEOT 207 (WA_, WC_) 1.4 PEUGEOT 207 SW (WK_) 1.4 PEUGEOT 306 (7B, N3, N5) 1.1 PEUGEOT 306 (7B, N3, N5) 1.4 SL PEUGEOT 306 Break (7E, N3, N5) 1.4 PEUGEOT 306 Hatchback (7A, 7C, N3, N5) 1.1 PEUGEOT 307 (3A/C) 1.4 PEUGEOT BIPPER (AA_) 1.4 PEUGEOT BIPPER Tepee 1.4 PEUGEOT PARTNER Box (5_, G_) 1.1 PEUGEOT PARTNER Box (5_, G_) 1.4 PEUGEOT PARTNER Box (5_, G_) 1.4 BiFuel PEUGEOT PARTNER Combispace (5_, G_) 1.1 PEUGEOT PARTNER Combispace (5_, G_) 1.4 |
1996-2008 2002-2011 1996-2011 2003-2005 1996-2008 2002-2011 1996-2011 2003-2008 2003-2012 2003-2009 2002- 2002-2571 2002- 2009-2013 2009-2016 2003- 2008- 2009- 1996-2003 1997-2005 1997-2005 1998-2005 2007- 2008- 2005- 1996-2004 1998-2000 1998-2007 1998-2012 2006-2007 2007- 2002- 2002-2007 2009-2013 2009-2013 2006-2013 2007-2012 1994-2001 1994-2001 1997-2002 1993-2001 2000-2003 2008- 2008- 1996-2005 1996-2015 2003-2006 1996-2002 1996-2015 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year |
Car Make: | CITROEN |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can V pulleys withstand variations in environmental conditions?
V pulleys are designed to withstand variations in environmental conditions to a certain extent. However, their ability to withstand different environmental factors depends on several factors, including the materials used, the specific design of the pulley, and the maintenance practices employed. Here is a detailed explanation:
1. Temperature:
V pulleys can generally withstand a wide range of temperatures. The specific temperature limits depend on the materials used for construction. For example:
- Cast iron and steel pulleys can handle high temperatures and are suitable for applications in industrial environments.
- Aluminum pulleys have a lower temperature limit, and excessive heat can affect their structural integrity.
- Plastic pulleys may have temperature limitations, and exposure to high temperatures can cause deformation or melting.
It’s important to consider the temperature range in which the V pulleys will operate and select materials accordingly.
2. Moisture and Corrosion:
V pulleys can be susceptible to corrosion, particularly if they are made of materials like cast iron or steel. Exposure to moisture, humidity, or corrosive substances in the environment can lead to rust or degradation of the pulley components.
To mitigate corrosion risks, protective measures can be taken, such as:
- Using corrosion-resistant materials like stainless steel or aluminum alloy.
- Applying coatings or finishes like zinc plating, powder coating, or anodizing to provide a barrier against moisture and corrosive agents.
- Regular cleaning and maintenance to remove accumulated dirt, debris, or corrosive substances.
3. Dust and Contaminants:
V pulleys may be exposed to dust, dirt, and other contaminants present in the environment. These particles can accumulate in the pulley grooves, affecting the grip and performance of the V-belt.
To minimize the impact of dust and contaminants:
- Implement proper guarding to prevent the ingress of debris and contaminants.
- Regularly clean the pulleys to remove accumulated dirt and ensure smooth belt operation.
- Consider using pulley covers or seals to provide additional protection against contamination.
4. Shock and Vibration:
V pulleys may be subjected to shock loads or vibrations in certain applications. These dynamic forces can affect the overall performance and integrity of the pulley and the power transmission system.
Design considerations, such as proper balancing, robust construction, and secure hub attachment, can help minimize the impact of shock and vibration on the pulleys.
5. UV Exposure:
If V pulleys are used in outdoor applications, they may be exposed to ultraviolet (UV) radiation from sunlight. Prolonged UV exposure can degrade certain materials, particularly plastics, causing them to become brittle or discolored.
If UV exposure is a concern, selecting materials with UV-resistant properties or applying protective coatings can help mitigate the effects of UV radiation.
While V pulleys are designed to withstand variations in environmental conditions, it is essential to consider the specific requirements of the application and select appropriate materials, coatings, and maintenance practices to ensure their long-term performance and durability.
Can V pulleys be integrated into conveyor systems for material handling?
Yes, V pulleys can be integrated into conveyor systems for material handling. Conveyor systems are widely used in various industries to transport materials efficiently and reliably. Here’s a detailed explanation of how V pulleys can be utilized in conveyor systems:
1. Belt Drive Mechanism:
V pulleys are commonly used as part of the belt drive mechanism in conveyor systems. The driving pulley is typically connected to a motor or an engine, while the driven pulley is connected to the conveyor belt. The rotation of the driving pulley causes the belt to move, enabling the transportation of materials along the conveyor.
2. Groove Profile:
V pulleys used in conveyor systems have a specific groove profile designed to match the shape of the V-belt used in the system. The groove angle, depth, and width are tailored to accommodate the corresponding V-belt dimensions. This ensures proper belt engagement and efficient power transmission, minimizing slippage and maximizing traction.
3. Belt Selection:
Various types of V-belts can be used in conveyor systems, depending on the specific requirements of the material handling application. Common V-belt types include classical V-belts, narrow V-belts, and cogged V-belts. The selection of the appropriate V-belt is based on factors such as load capacity, speed, environmental conditions, and the nature of the materials being conveyed.
4. Tensioning Mechanism:
V pulleys in conveyor systems are typically accompanied by a tensioning mechanism to maintain the proper tension in the belt. Tensioning devices such as idler pulleys or tensioners are used to adjust the tension and ensure optimal belt engagement with the pulleys. Proper tensioning is essential for efficient power transmission and to prevent belt slippage.
5. Pulley Diameter and Speed Ratio:
The diameter of the pulleys and the speed ratio between the driving and driven pulleys are critical considerations in conveyor system design. By selecting pulleys of different diameters, different speed ratios can be achieved, allowing for customization of the conveyor system’s speed and throughput. This flexibility enables the system to be tailored to the specific material handling requirements.
6. Belt Alignment and Tracking:
Proper alignment and tracking of the conveyor belt are essential for efficient operation and to prevent belt damage or premature wear. V pulleys are designed to facilitate belt alignment by providing a consistent and stable contact surface for the belt. Additionally, tracking devices such as aligning idlers or belt tracking systems can be incorporated to ensure the belt stays centered on the pulleys.
7. Durability and Maintenance:
V pulleys used in conveyor systems are typically made of durable materials such as steel or cast iron, which can withstand the demands of continuous operation and heavy loads. Regular maintenance, including inspection, lubrication, and occasional belt replacement, is necessary to ensure the long-term efficiency and reliability of the conveyor system.
Overall, V pulleys are an integral component of conveyor systems for material handling. Their design characteristics, combined with the use of appropriate V-belts and proper tensioning, facilitate efficient power transmission, reliable operation, and effective transport of materials in various industrial applications.
Can you explain the typical applications of V pulleys in machinery?
V pulleys, also known as V-belt pulleys or sheaves, have a wide range of applications across various machinery and systems. Here’s an explanation of the typical applications of V pulleys:
1. Automotive Systems:
V pulleys are extensively used in automotive systems. They are found in engines, where they transmit power from the crankshaft to various accessories such as the alternator, water pump, power steering pump, and air conditioning compressor. V pulleys in automotive applications ensure efficient power transmission and enable the proper functioning of essential vehicle components.
2. Industrial Machinery:
In industrial machinery, V pulleys find widespread use in power transmission systems. They are commonly employed in belt-driven conveyor systems, where they transfer power from electric motors to drive belts that move materials or products along the conveyor lines. V pulleys are also used in various industrial equipment, such as agricultural machinery, machine tools, printing presses, and packaging machines.
3. HVAC Systems:
Heating, ventilation, and air conditioning (HVAC) systems utilize V pulleys for power transmission. V pulleys are employed in fans, blowers, and pumps used in HVAC systems. They enable the efficient operation of these components and contribute to the proper circulation of air or fluids in buildings, ensuring effective heating, cooling, and ventilation.
4. Appliances:
V pulleys are found in a range of household and commercial appliances. They are used in washing machines and dryers to transmit power from electric motors to the drum or agitator. V pulleys are also employed in power tools, such as drills and saws, to transfer rotational motion from the motor to the cutting or drilling mechanism.
5. Mining and Construction Equipment:
In the mining and construction industries, V pulleys are utilized in heavy machinery and equipment. They are commonly found in excavators, bulldozers, cranes, and loaders, where they transmit power to various components such as hydraulic pumps, winches, and conveyor systems. V pulleys in mining and construction equipment play a crucial role in enabling efficient and reliable operation in demanding environments.
6. Agricultural Equipment:
Agricultural machinery extensively employs V pulleys for power transmission. Tractors, combines, harvesters, and other agricultural equipment utilize V pulleys to transfer power to different components, including pumps, augers, conveyors, and cutting mechanisms. V pulleys in agricultural machinery facilitate the efficient performance of farming operations.
These are just a few examples of the typical applications of V pulleys in machinery. Due to their versatility, reliability, and ability to handle high torque, V pulleys are widely utilized in numerous industries and mechanical systems to ensure efficient power transmission and proper functioning of various equipment and machinery.
editor by CX
2024-05-08